If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100t=-16t^2+128t+1
We move all terms to the left:
100t-(-16t^2+128t+1)=0
We get rid of parentheses
16t^2-128t+100t-1=0
We add all the numbers together, and all the variables
16t^2-28t-1=0
a = 16; b = -28; c = -1;
Δ = b2-4ac
Δ = -282-4·16·(-1)
Δ = 848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{848}=\sqrt{16*53}=\sqrt{16}*\sqrt{53}=4\sqrt{53}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{53}}{2*16}=\frac{28-4\sqrt{53}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{53}}{2*16}=\frac{28+4\sqrt{53}}{32} $
| 4x–14=–5+x | | (2х–6)(2x+6)–64=0 | | 3x–5=5–7x | | 7-3x=3(2x-4 | | 33=w/5+9 | | 160t=-16t^2+16t+480 | | Z1+z2+z3+z3=10 | | 7560=(n+-2)*180 | | 100t=-16t^2+16t+480 | | 2880=(n+-2)*180 | | 3600=(n+-2)*180 | | x+134=130 | | 2340=(n+-2)*180 | | 6x-7=-39 | | 40/120=x+125/500 | | (50)+(2x-4)=100 | | 6+10x=x+6 | | (7x)+(3x-5)+(8x+5)=180 | | N=-5x4 | | 52+x=102 | | 3c^2−2c−6=0 | | 5/3x-29=9/48 | | 5/12x-3/4=7/6-2/6x | | a÷5+8=14 | | 5(x-7)^2-13(x-7)-6=0 | | 11x/2=15 | | 10q=1,000,000,000q= | | 10q=1,000,000,000 | | 9x–7=9x–7=8x8x | | 16=4(4+x) | | 4^4x-2=2 | | 3i-15=-193 |